2009.02.16
医学論文掲載サイト「Medline」に、共同研究論文が掲載されました。
論文を添付しますので、英語の得意な方は是非とも一読下さい。
http://www.ncbi.nlm.nih.gov/pubmed/19106159?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DefaultReportPanel.Pubmed_RVDocSum
J Biochem. 2008 Dec 23.
Beta-catenin Induces {beta}-TrCP-mediated PER2 Degradation Altering Circadian Clock Gene Expression in Intestinal Mucosa of ApcMin/+ Mice.Yang X, Wood PA, Ansell CM, Ohmori M, Oh EY, Xiong Y, Berger FG, Peña MM, Hrushesky WJ.
Medical Chronobiology Laboratory, Dorn Research Institute, WJB Dorn Veterans Affairs Medical Center, Departments Of Pathology, Microbiology, and Immunology and Cell Developmental Biology and Anatomy, School of Medicine, and Department of Biological Sciences, College of Arts and Sciences, and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina, USA.
Proliferation of intestinal epithelial cells is rhythmic throughout the day. This temporal organization occurs through the interaction between the endogenous peripheral circadian clock and pathways controlling cell cycle progression. Per2, a core clock gene with tumor suppresser function, is critical to clock function and to the regulation of cellular proliferation. Circadian disruption, which increases colon cancer incidence, may do so by deregulating clock controlled epithelial cell proliferation. Increased expression of beta-catenin is a contributing cause of most familial and spontaneous human colon cancer and the cause of multiple intestinal neoplasia of the Apc(Min/+) mouse. Here we report that increased beta-catenin destabilizes PER2 clock protein by inducing beta-TrCP, an F-box protein of SCF ubiquitin E3 ligase. In the intestinal mucosa of the Apc(Min/+) mouse, the decrease in PER2 protein levels is associated with altered circadian rhythms of clock genes, Per1 and Per2, and clock controlled genes, Dbp and Wee1. These findings suggest that disruption of the peripheral intestinal circadian clock may be intimately involved in beta-catenin induced intestinal epithelial neoplastic transformation in both mouse and man.
PMID: 19106159 [PubMed - as supplied by publisher]